The Largest Sample Eigenvalue Distribution in the Rank 1 Quaternionic Spiked Model of Wishart Ensemble

نویسنده

  • Dong Wang
چکیده

We solve the largest sample eigenvalue distribution problem in the rank 1 spiked model of the quaternionic Wishart ensemble, which is the first case of a statistical generalization of the Laguerre symplectic ensemble (LSE) on the soft edge. We observe a phase change phenomenon similar to that in the complex case, and prove that the new distribution at the phase change point is the GOE Tracy-Widom distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices

The problem of understanding the limiting behavior of the largest eigenvalue of sample covariance matrices computed from data matrices for which both dimensions are large has recently attracted a lot of attention. In this paper we consider the following type of complex sample covariance matrices. Let X be an n×p matrix, and let its rows be i.i.d NC(0,Σp). We denote byHp the spectral distributio...

متن کامل

Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations

Let λ1, · · · , λn be random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n, p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ...

متن کامل

On the condition number of the critically-scaled Laguerre Unitary Ensemble

We consider the Laguerre Unitary Ensemble (aka, Wishart Ensemble) of sample covariance matrices A = XX∗, where X is an N × n matrix with iid standard complex normal entries. Under the scaling n = N + b √ 4cNc, c > 0 and N →∞, we show that the rescaled fluctuations of the smallest eigenvalue, largest eigenvalue and condition number of the matrices A are all given by the Tracy–Widom distribution ...

متن کامل

Distribution of the largest eigenvalue for real Wishart and Gaussian random matrices and a simple approximation for the Tracy-Widom distribution

We derive efficient recursive formulas giving the exact distribution of the largest eigenvalue for finite dimensional real Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). In comparing the exact distribution with the limiting distribution of large random matrices, we also found that the Tracy-Widom law can be approximated by a properly scaled and shifted gamma distribution, with...

متن کامل

Analytic approximation to the largest eigenvalue distribution of a white Wishart matrix

Eigenvalue distributions of Wishart matrices are given in the literature as functions or distributions defined in terms of matrix arguments requiring numerical evaluation. As a result the relationship between parameter values and statistics is not available analytically and the complexity of the numerical evaluation involved may limit the implementation, evaluation and use of eigenvalue techniq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008